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SUMMARY 

Interactive vortex shedding in the multiply connected domain formed by a pair of circular cylinders is 
analysed by the FEM-FDM blending technique. The vorticity-streamfunction formulation is used to  solve 
the incompressible Navier-Stokes equations at Re = 100, with the time-dependent wall streamfunctions 
determined from the pressure constraint condition and the far-field streamfunctions from the integral series 
formula developed earlier by the authors. The standard Galerkin finite element method is used in the 
relatively small F E M  subdomain and the finite difference method based on the general co-ordinate system in 
the rest of the flow domain. Symmetric, antisymmetric and asymmetric wake patterns are obtained 
confirming the earlier experimental findings. The bistable nature of the asymmetric vortex shedding as well as 
the intermittent drifting from one status to  the other between symmetric and antisymmetric wake patterns 
are reported. 
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1. INTRODUCTION 

It is well known that the vortices shed from a pair of circular cylinders in a steady uniform flow 
interact dynamically. The individual or combined wake behind the cylinders is therefore different 
from that behind an isolated circular cylinder. Zdravkovich‘ has reviewed the earlier works on 
related problems consisting of tandem, transverse and staggered arrangements of the cylinder 
pair. While the majority of the experimental researches were performed in the high-Reynolds- 
number range 103-105, Williamson,’ using flow visualization methods, has studied the fluid flow 
behind a pair of bluff bodies in the low-Reynolds-number range 5CL200. 

The gap between the cylinder surfaces divided by the diameter, g*, is known to be a very 
important parameter, particularly for the transverse arrangement. The wake pattern, Strohal 
number and lift and drag coefficients experience serious changes in this case. Historically, many 
researchers, including Biermann and Herrn~tein,~ L a n d ~ e b e r , ~  Spivack and Hori,6 have 
observed these facts. When g* is larger than about 5.0, virtually no interactions are generated 
between the two Karman vortex streets. When g* is in the range 1G5.0, the two Karman vortex 
streets exist either in symmetric (opposite phase) or antisymmetric (same phase) form. Ishigai et 
a1.,7 Bearmann and Wadcock* and Williamson’ have stated that one form can change to the other 
and each form is maintained for some period. When g* is smaller than 1.0, more interesting 
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phenomena appear. Ishigai et al.,' Bearmann and Wadcock* and Williamson' have found that the 
wake behind the cylinder pair is asymmetric and the gap flow between the two cylinders is biased 
either upwards or downwards. They have also noticed that the biased flow in the gap is bistable 
and changes intermittently. 

The present study has been motivated by these stimulating experiments and the earlier 
computational work done by the authors on vortex shedding from a circular ~y l inde r .~  The 
physical domain of the present problem is multiply connected and the geometry is rather 
complicated for generating the computational mesh. Grid generation techniques such as 
multiblock, grid embedding or patched co-ordinates found in Thomson et d." may be considered 
for the finite difference purpose, but they are all subject to either grid singularity or an inefficient 
data interpolation procedure. Stansby" used the discrete vortex method to simulate the flow 
phenomena with two cylinders in a transverse arrangement. The discrete vortex method does not 
require a grid generation but depends on a potential flow calculation. Therefore this method is 
computationally efficient but restricted to the high-Reynolds-number range. The finite element 
method is known to be a very flexible tool in treating irregular geometry, but it is questionable as 
to the computational efficiency whether this should be the choice for the present highly unsteady 
computation regarding the vortex dynamics. A compromise is hence made in the present paper by 
blending the two techniques, the finite elements distributed in the limited highly viscous region 
connecting the two cylinders and the finite difference mesh obtained from arbitrary co-ordinates 
to be used in the rest of the computational domain. The two subdomains are overlapped only by 
one element width and no data interpolation is necessary owing to sharing of the same data points. 
In this way it was possible to obtain very smooth solutions with the FEM flexibility in the 
dilemma region and the FDM efficiency in the majority of the computational domain. 

The vorticity-streamfunction form of the incompressible Navier-Stokes equations is used in the 
present computation. The wall vorticity is calculated from the field streamfunction value at each 
time step. On the two cylinder surfaces the streamfunctions are constant but vary with time. They 
are all updated at each time step through the restriction condition. Also, the far-field streamfunc- 
tions are accurately evaluated at each time step from the integral series formula developed by the 
authors.'* 

The present paper presents theoretical verification of the earlier phenomenological findings on 
interactive vortex shedding. The persistency as well as the intermittency of the symmetric and 
antisymmetric sheddings are computed. The bistable nature of the asymmetric vortex streets is 
confirmed. The time-mean lift and drag coefficients as well as the Strohal number are also 
presented for comparison with the results of the single cylinder. 

2. NUMERICAL METHODS 

Governing equations 

The vorticity [ and streamfunction $ are governed by the equations 

V'*= -[, (2) 

where u(x, t )  is the velocity vector and the Reynolds number is based on the free stream velocity 
and the cylinder diameter. In the above the reference scales are the cylinder radius and the free 
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stream velocity. The velocity field is related to the vorticity and streamfunction as 

av aU [=--- ax ay7 
a*  
a Y  ' 

u=- 

all/ 
ax 

v =  --. 

Finite element formulation 

The standard Galerkin finite element method is used in part of the computational domain to 
solve equations (1) and (2). For the same test function w(x) the weighted residual projections are 
given as 

where R is a domain in R2.  Applying integration by parts to the Laplacian operators in the above 
equations and assigning the prescribed Dirichlet conditions to all boundary points, equations (6) 
and (7) can be rewritten as 

jfl Vll/ * VwdR - [wdR = 0. I 
In matrix form these equations form a system of ordinary differential equations: 

d i  2 
M- + C(Jl)r+-Kr=O, 

dt Re 

(9) 

K*- Mr=O, (1 1) 

where rand  *are now vectors of the nodal values and matrices M, C( *) and K are easily derived 
from equations (8) and (9). Forward differencing for the time term in the vorticity transport 
equation yields 

(12) 

(13) 

2 
Re 

c+ 1 = c + AtM- I (  -c( - -K) r, 
@ + I  = ~ - 1 ~ k + l ,  

where At  is the time step. The values of the wall vorticity are obtained from the no-slip condition 
found in Roache.13 Zero vorticity is used as the iqitial condition for equation (12). Since the 
matrices M and K are symmetric, the frontal technique, which is not iterative, can be used to solve 
the linear systems. Isoparametric elements with four nodes and bilinear shape functions are used. 
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Finite diffierence formulation 

The governing equations ( 1 )  and ( 2 )  are written in the general co-ordinate system (<, q)  by a 
transformation from (x ,  y )  co-ordinates. The transformation of the equations is based on the 
formulae 

where 

Here f is an arbitrary function and all the subscripts mean derivatives. The metric coefficients and 
the Jacobian J are obtained by a numerical grid generation technique. Of many such techniques, 
that of Steger and S ~ r e n s o n ’ ~  is chosen in this study to generate the 0-mesh surrounding the finite 
element region. 

Central differencing in space and forward Euler differencing in time are used to retain 
compatibility with the FEM formulation: 

The far-field vorticity is taken as zero owing to its fast decay. Zero vorticity is also used as the 
initial condition. The finite difference form of the streamfunction equation is solved by the point- 
SOR method. 

Streamfunction boundary conditions 

In the multiply connected domain the values of the wall streamfunctions cannot be prescribed 
but must be calculated as part of the solution. To determine those unknown values, Sood and 
Elrod,15 Tezduyar et a l l 6  and Park and Charig” have paid attention to the single-valuedness of 
the pressure for the multiply connected domain. The equation of motion along an instantaneous 
streamline can be written as 

where q is the speed along the streamline and s and n indicate tangential and normal directions to 
the streamline respectively. Integrating the above equation around a closed streamline, we obtain 
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where C is the integration contour. Along the stationary, impermeable, solid wall surface q is 
independent of time and we obtain the constraint 

jcg ds = 0. 

tjwall(t) can now be calculated through this constraint. 
For an open flow problem the computational far-field boundary is located at a finite distance 

from the solid bodies. It has been conventional that free stream values or potential flow solutions 
are applied for the streamfunction on the computational far-field boundary. However, it is 
required for accuracy reasons that the computational far-field boundary be located very far from 
the solid boundaries: for example, 100 radii for a vortex-shedding problem is not surprising owing 
to the slow logarithmic decay of the perturbed streamfunction. This is in contrast to the 
exponential decay of the vorticity. Sa and ChangIz have recently developed a new integral series 
form of the far-field streamfunction and demonstrated its efficiency for time-dependent flow 
problems. The far-field streamfunction in this case is expressed as 

. P  

XI = xc- x, (28) 
where the subscripts ‘far’ and ‘FS’ mean far-field boundary and free stream respectively, S is the 
whole computational domain and xc is the position vector of a field vorticity point. Reference 12 
further elaborates the integral on the right-hand side to obtain reduced expressions which are 
readily computable. Using this form, they demonstrated that it was possible to bring the 
computational boundary to a short distance from the origin. The distance in the present 
calculation was taken as 25 times the radius of the circular cylinders. 

F E M - F D M  blending technique 

Since the FEM domain is embedded in the FDM domain, it is necessary to perform data 
exchange between the two systems. The two subdomains are overlapped as shown in Figure 1 by 

FDM dcmain 

1 FM domain 

1 : bouidary line of the FEM domain -e 
ld : boundary l ine  of the FDM domain 

Figure 1 .  FEM-FDM blending 
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only one element width and share the same data points: hence no interpolation is necessary. 
During a time step advancement, the two subdomains are solved sequentially with some 
iterations. Thus Dirichlet boundary conditions are specified on the interface boundary in each 
subdomain. 

In the case of the present calculation, five sub-iterations are accomplished in the FDM domain 
and the frontal method, which is a sort of Gauss elimination, is used in the FEM domain. This 
procedure completes one global iteration. In order to obtain the converged solution at each time 
step, several global iterations are required. The relative tolerance limit of 0.001 has been used. 

3. SYMMETRIC AND ANTISYMMETRIC VORTEX SHEDDING 

When the gap between the cylinder surfaces is in the range 1+5-0, it is known experimentally that 
either the symmetric or the antisymmetric vortex shedding pattern can appear. The gap and 
Reynolds number are chosen here as 2.0 and 100 respectively to demonstrate the appearance of 
these shedding patterns. The numerically generated finite difference and finite element mesh is 
shown in Figure 2 for two different gaps, g*=2.0 and 0.7. The shaded closed band is the 
overlapped region of the two subdomains. The number of elements is 900 in the FEM subdomain 
and the size of the FDM mesh is 81 x 41 for a gap of 2.0. The non-dimensional time step of the 
computation is taken as 0.05. 

Instantaneous streamlines and vorticity contours are plotted at each quarter-cycle in Figures 3 
and 4. On the interface boundary between the FEM and the FDM subdomains it can be observed 
that the solutions are perfectly smooth. Although the cylinder pair is located normally to the free 
stream, each cylinder has an angle of attack because of the proximity of the two cylinders: the 
upper cylinder has a positive one and the lower cylinder a negative one. A repulsive force is 

Figure 2. Computational mesh: (a) g* = 2.0; (b) g* =0.7 
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Figure 3. Symmetric vortex shedding: the instantaneous streamlines and vorticity contours 

therefore created between the two cylinders in the time-mean sense. In the case of the symmetric 
vortex shedding (Figure 3) the vortex rows do not merge but maintain their forms for a relatively 
longer time span; it is noted here that the dividing streamlines are straight. In contrast, the 
antisymmetric vortex rows merge through a combination of vortices of the same sign, as 
Williamson2 has shown using flow visualization methods; note the fluctuation of the dividing 
streamlines in Figure 4. In the downstream region the merged vortex rows form a single vortex 
street. 

The curves of lift, drag and moment coefficients are shown in Figures 5 and 6. In the symmetric 
vortex shedding (Figure 5) the lift coefficient curves of the upper and lower cylinders have a 180" 
phase difference while the drag coefficient curves are almost in the same phase. In the 
antisymmetric case the opposite is true. It is recalled that for a circular cylinder the drag coefficient 
fluctuates twice during one period of alterna.te vortex shedding. In the case of a pair of circular 
cylinders, however, one period of the drag coefficient is the same as that of the lift coefficient. In 
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Figure 4. Antisymmetric vortex shedding: the instantaneous streamlines and vorticity contours 

addition, the drag coefficient curves have three inflection points during the ascent phase but only 
one during the descent phase. This is attributed to the fact that the inner vortex towards the 
dividing streamline is somewhat smaller and weaker than the outer one during an alternate vortex 
shedding. It is also directly associated with the outwardly skewed position of the vortices when 
they are shed from each cylinder. 

It is observed that the antisymmetric vortex shedding (Figure 6)  has a rather regular form in the 
lift and drag coefficient curves in comparison with the symmetric vortex shedding. It is also 
ascertained in the present calculation that the former maintains its vortex pattern for a longer time 
span than the latter. The vortex drifts with time from the symmetric shedding to the antisymmetric 
one and vice versa. The process of phase change from the former to the latter is demonstrated in 
Figure 7. 

Various fluid dynamic results from the present calculations are listed in Table I. They are the 
time-averaged values plus the fluctuation amplitudes during a cycle, denoted by ‘k’ symbols. 
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Figure 5. Lift, drag and moment coefficients for the symmetric vortex shedding; on the time axis, one division represents 
20 s (the solid lines are for the upper cylinder and the dashed lines for the lower one) 
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Figure 6. Lift, drag and moment coefficients for the antisymmetric vortex shedding; on the time axis, one division 
represents 20 s (the solid lines are for the upper cylinder and the dashed lines for the lower one) 
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time 

Figure 7. Drift from the symmetric vortex shedding to the antisymmetric one; on the time axis, one division represents 20 s 
(the solid lines are for the upper cylinder and the dashed lines for the lower one) 

Table 1. Numerical results 
~~ ~ ~~ 

Case 1 Case 2 Case 3 Case 4 

CL 0 104 f 0 3  1 0.108 & 0.3 1 0.39 f 0.26 
CD 1.525 k0.03 1.533 +0.04 0.88 1.215f0.01 
St  018 0.18 0.11, 0.22 0.16 
8, (outside) 65.0 65.0 63.5 
0, (inside) 57.8 58.1 63.9 

Case 1: cylinder pair, g* =2.0, symmetric vortex shedding. 
Case 2: cylinder pair, g* = 2.0, antisymmetric vortex shedding. 
Case 3: cylinder pair, g* =0.7, asymmetric vortex shedding. 
Case 4 single cylinder; the Strohal number is from Braza et al.I9 and the rest are from Borthwick.'' 

Zdravkovich' collected some experimental data in his review paper and concluded that the lift 
coefficient (C,) increases as the gap becomes narrower and the sum of the bistable high and low 
drag coefficients (C,) is always less than twice the drag coefficient of a single cylinder. The present 
results show the same trend. The separation angles (0,) measured from the rearward stagnation 
point are given by their absolute values. The inside separation angle is smaller than that of a single 
cylinder while the outside separation angle is slightly larger than that of a single cylinder. Also, we 
can see that the time-averaged numerical values are scarcely different between the symmetric and 
antisymmetric sheddings. 

4. ASYMMETRIC VORTEX SHEDDING 

When the gap is smaller than one diameter, it is known that the near wake of the cylinder pair is 
asymmetric and the gap flow is biased. In this section the representative gap is chosen as 0.7. As in 
the previous section, the Reynolds number based on the freestream velocity and the cylinder 
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Figure 8. Instantaneous streamlines and vorticity contours for the asymmetric vortex shedding. (a) upward bias; (b) 
downward bias 
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Figure 9. Lift and drag coefficients showing the bistable nature (the solid lines are for the upper cylinder and the dashed 
lines for the lower one) 
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diameter is 100. The number of elements is 780 in the FEM subdomain and the FDM mesh is 
61 x 41. The time step is also 0.05. 

The biased gap flow is clearly shown in Figure 8. The individual vortex street does not exist but 
the combined vortices establish a single wake as if they had originated from a single body. This is 
due to the fact that the velocity of the gap flow is slow and the gap vorticity is weak compared with 
the case of larger gap size. The calculated drag coefficient curves indeed describe the bistable 
nature of the wake behind the cylinder pair; see Figure 9. When the gap flow is deflected upwards, 
the upper cylinder has a larger drag and higher shedding frequency than the lower one since the 
wake behind the former is relatively in suction pressure. It is shown in the curves of lift coefficient 
that the higher-drag cylinder has a higher shedding frequency, about twice that of the lower-drag 
one. These facts are in good agreement with the many earlier experimental observations done by 
Ishigai et al.,’ Bearmann and Wadcock’ and Quadflieg.’* 

Case 3 of Table I shows that the asymmetric vortex shedding has two different Strohal numbers 
St  (= f d / U ,  where f is the shedding frequency) because of its bistable nature. Actually, the Strohal 
numbers are somewhat scattered around the two different values separately. The experimental 
results of the above authors showed that the two different Strohal numbers were collected around 
0.12 and 0.24 when g* = 0.7 and around 020 when g* = 20. Since they carried out their 
experiments in the Reynolds number range 103-105, the Strohal numbers are a little higher than 
the present results shown in Table I, but the bistable nature compares well. 

5. CONCLUSIONS 

Investigations of the flow around a pair of circular cylinders have been carried out in the literature 
mainly by experiments. The multiple-connectedness of the flow domain seems to have been a 
major handicap for a proper theoretical approach. It is evident that the finite element method can 
cope well with such a configuration. However, if the number of elements is large, the finite element 
method requires excessive computer power, especially for an unsteady flow problem. The 
FEM-FDM blending technique has proved to be clever practically. 

The computational results showed the peculiar near-wake flow patterns such as symmetric, 
antisymmetric and asymmetric ones. The bistable nature of the gap flow for the asymmetric vortex 
shedding has been confirmed through the multiple-valued Strohal number, the semi-periodic lift 
and drag coefficient curves and the instantaneous streamlines. Also, we have found that the 
antisymmetric vortex-shedding pattern is maintained for a longer span of time than the symmetric 
one before it drifts away to the other form. 
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